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S U M M A R Y  
Maximum and minimum principles for certain plate bending problems are derived in a unified manner from the canon- 
ical theory of complementary variational principles for multiple operator equations. The minimum principle is known 
in the literature, but the maximum principle appears to be new. A new error bound for approximate variational 
solutions is also presented. 

1. Introduction 

The boundary value problem described by the equations 

Lq~ =- v44~-div (M grad qS) = f (x ,  y) in R ,  

qS=0 on ~?R, 

~n 0 o n  0 R 1 ,  

= bVZ~b on ~R2 = ~R-~Ra  , 

(1) 
(2) 

(3) 

(4) 
arises in the theory of thin elastic plates (cf. [1-1 ). Here R is a region in the xy-plane which has a 
piecewise smooth boundary OR; ~b is the deflection of the plate normal to the surface, f (x ,  y) 
is a measure of normal loading, and M is a positive symmetric stress matrix. The boundary 
conditions (3) and (4) correspond to a plate which is clamped on parts OR 1 of the boundary 
and simply supported on the remainder c3R2=3R-~R1, where n is the outward pointing 
normal to the boundary, and b = p/(1 - v), p being the radius of curvature of ~R and v being 
Poisson's ratio. This includes the separate cases where the whole of the boundary is clamped 
(~R a -  0) and where the whole of the boundary is simply supported (3R 1 =-0). 

A minimum principle associated with this class of problems is known in the literature [1]. 
In this paper we present a new complementary maximum principle together with a new error 
bound on variational solutions. The error bound is important since it provides an estimate of 
the accuracy of approximate solutions for the deflection of the plate. 

2. Canonical formalism 

The basic equations in the theory of complementary variational principles are the generalized 
canonical equations (see [2], [3] ) 

c?H Tq - (5) 

~H 
T*u = 0-~' (6) 

where T is some linear operator and T* is its adjoint with respect to a suitable inner product. 
To cast equation (1) into this form we write the positive symmetric matrix M as 
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(7) M = NtN, 

where t denotes transpose, and introduce the operators 

= V 2 , ( 8 )  

and 
T2 = N grad,  (9) 

and their adjoints 

T* = V 2 , (10) 

T* = - d i v ( N t ) ,  (11) 

where 

JR f OTl(gdxdy = f (r*O)c~dxdy + boundary terms,  (12) 
R 

f wtT249dxdy = f (T*w)(adxdy + boundary terms,  (13) 
d R dR 

for all suitable ~, ~b and w. These are now used to define the operators T and its adjoint T* 
which are such that 

,141 TO= T2 0 

for all suitable scalar functions q~, and 

T* u = T* u 1 + T* u2 (15) 

for all suitable vector functions u with components ua and u2, where u2 itself is a 2-vector. From 
these definitions it follows directly that the relation between T and T* can be written 

fR i~tT(gdxdy = ~R (T*u)c~dxdy+ B(u, c~)~n , (16) 

where 

From (1) and (7) to (11) we see that 

L = T* T 1 + T~ T 2 (18) 

= T* T (19) 

by (14) and (15). Thus equation (1)takes the form 

T* TO =f(x, y) in R (20) 

subject to the boundary conditions 

~b = 0 on OR (21) 

0~ = 0 On OR, (22) 
0n 

= bT~  on 0R 2 . (23) 

We can write (20) in the canonical form of (5) and (6) by taking 

O H .  
TqS-=u = ~ m R (24) 

OH T*u = f ( x , y ) = ~ -  in R (25) 
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with boundary conditions 

q5 = 0 on OR (26) 
04 
0n-= 0 on 0R 1 (27) 

= bul o n  ~ e  2 (28) 

where u = . A suitable Hamiltonian H in (24) and (25) is 
U2 

H(u, (o) = �89 (29) 

This completes the canonical formalism. A similar multiple operator formalism has recently 
been employed for a class of ordinary differential equations [4]. 

3. Complementary variational principles 
To obtain variational principles associated with the boundary problem in (1) to (4) we introduce 
the functional (see [2], [3]) 

I (U, 4)) = JR {UtT4)-H(U' 4))} dxdy+ [boundary terms] ,  (30) 

where the boundary terms are chosen to lead to the boundary conditions (2) to (4), or (26) to 
(28). In the present case this functional takes the form 

I(U' 4)) = fR {UtT4)--H(U' 4))}dxdy -- foR {U1 04)On OU14)} 

+ foR~ �89 fOR 4) U~N (drYtx), (31) 

j {(T*U)4)-H(U, Ob)}dxdy + f �89 (32) 
R OR2 

where we have used (16) and (17). 
Let u and 4) denote the exact solution pair of (24) to (28). Then the following results are 

readily verified. 

3a. First variational principle. For arbitrary independent functions U, 4) the functional 
I (U, 4)) is stationary at (u, q~), the solution pair of the boundary value problem (24) to (28). 
3b. Second variational principle. Let 4) be an admissible function which satisfies the boundary 
conditions 

O4) 
4 ) = 0  on OR, 0n - 0 on 0R1. (33) 

Then using (31) we define afunctional  J(4)) by 

: 1 04) J(4)) = I(U(4)), 4)), U(4))= T4) in R ,  U1(4)) = ~ 0~- on 0R2. (34) 

This gives 

J(4)) = fR {�89189 4))'M(grad 4))-f4)}dxdy - fo,2 ~ \  ~n] ds. (35) 

If we expand about  4) we find that 

J(4)) = I(u, c~)+62 J , (36) 
where 

IJR i f  I ( 0 ~  z 62J = ~ {(V2~)2+(grad~)tM(grad~)}dxdy-g OR2g\Onj ds (37) 

is the second variation, with 3 =  4)-~b. From (36) we see that J(4)) is stationary at 4). 
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3c. 

T* U = f  in R.  

Using (32) we define a functional G(U) by 

G(U) = I(U, ~),  [U subject to (38)]. 

This gives 

G(U)= - �89 .(, UtUdxdy+�89 fo,2bUZds. 

If we expand about u it follows that 

G(U) = I (u, 4))-t-62G, 
where 

A. M. Arthurs, R. I. Reeves 

Third variational principle. Let U be an admissible function which satisfies the condition 

(38) 

(39) 

(40) 

(41) 

(42) = f. (V-u)'(v-.)dxdy+�89 f0.2 b(Vl-Ul)2ds 
is the second variation. From (41) we see that G(U) is stationary at u. 

Since the exact solution u is related to 4) by u= T4) in R and u 1 =b-l(84)/gn) on 8Rz, it is 
desirable to choose the function U to have the form 

1 871 
U--TkU in R,  U ~ = ~  8~ on 8R2, (43) 

where 7/is intended to be an approximation to 4). Then from (40) 

- �89 {(V2~)Z+(grad ~)'M(grad ~)dxdy+�89 R2b \ S n /  ds, (44) 

and here, by (38), the function 7/satisfies the constraint 

L~  = f  in R.  (45) 

3d. Minimum principle. If b < 0 we see from (37) that 1~2 j is nonnegative. Hence, by (36), we 
obtain the minimum principle 

I (u, 4)) < J ((b), (46) 

where J((b) is given by (35) with ~b subject to (33), equality holding when (b is equal to 4). This 
is the principle of minimum energy [1]. 

3e. Maximum principle. If b < 0 we see from (42) that 62 G is nonpositive. Hence, by (41), we 
obtain the maximum principle 

G (U (tP) ) <_ I (u, 4)), (47) 

where G(U(~P))is given by (44) with 7 ~ subject to (45), equality holding when kv is equal to 4). 
This maximum principle appears to be new. 

3f. Complementary variational principles. Combining the results of 3d and 3e, we see that 
if b < 0 we have the complementary principles 

G(U(~P)) < I(u, 4)) < J(~)), (48) 

where J(~) is given by (35) with �9 subject to (33), and G(U(~P)) is given by (44) with 7/subject 
to (45). 

Thus we have obtained upper and lower bounds for the quantity I(u, 4)) which from (31) 
and (32) is 
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I(u,.O) = j "  {�89189 qS)'M(grad ~?)-f4)}dxdy-�89 fOR2 b\cn]  ds 

These extremum principles can of course be used to generate approximate solutions of the 
~oundary value problem by the Rayleigh-Ritz and other methods. Now if attention is centred 
on the variational solution ~b of the boundary value problem, it is desirable to have an estimate 
of the error in this approximate solution. When the complementary principles (48) hold, such 
an estimate, or error bound, can be obtained. 

4. Error bound 

We shall suppose that b < 0 so that the complementary variational principles (48) hold. Then 
we can say that for any admissible functions �9 and 7 j 

J(~)-G(U(~)) >= J(~)- I(u, c~) 
= 62 J ,  (49) 

where, by (37), 

f 62J = �89 (T~)'(T~)dxdy-�89 g \~n/ ds, (50) 
R2 

with ~ = ~b-q~. Since �9 and q~ satisfy conditions (33), we have 

= 0 on 0R,  0n 0 on 0R1. (51) 

Integrating the first term on the right of (50) by parts, as in (16) and (17), and using (51) we 
obtain 

To get a useful result from this we make the integral over ORz in (52) vanish. Thus we shall 
require 

0~ bV2~ o n  0 R 2 ,  (53) 
On 

and since ~ = ~b-~b and ~b satisfies (4), equation (53) implies that 

&b 
--  bV2~ o n  0R 2 . (54) 

0n 

This means that the function ~ satisfies all of the boundary conditions (2) to (4). Then (52) 
reduces to 

62J = �89 fR ~L~dxdy. (55) 

If A is a lower bound to the (positive) lowest eigenvalue of 

LO = 20 in R ,  (56) 

subject to 

0 = 0 on OR, (57) 

00 
On 0 on 0R 1 , (58) 

(59) = b V 2 0  o n  3 R 2 ,  
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it follows that 

62J > �89 I]~b- q51122, (60) 

where [I ~ [I L2 denotes the L 2 norm {IR ~02 dx dy}L From (60) and (49) we therefore have the error 
bound 

Ilqb--4)[IL2 <= [{2J(~b)-2G(U(ltO) } A-1]-~ = E(~b) say. (61) 

In expression (61), J (~)  is given by (35) and the variational function ~ must satisfy all of the 
given boundary conditions (2) to (4), G(U(70) is given by (44) and ~v must satisfy condition 
(45), and A is obtained from the eigenproblem in (56) to (59). 

5. An example 

To illustrate these results we consider the problem 

Lq5 - V r qS- V 2 q5 = 1 in R ,  (62) 

~b = 0 on 0R,  (63) 

3q5 _ 0 on aR (64) 
On 

for a clamped plate. This corresponds to 

f ( x , y ) = l ,  M = ( I 0  01), (65) 

0R 1 = OR, 0 R  2 = 0,  (66) 

and we take R to be the square 

R = { - 1 <  x, y <  1}. (67) 

We have performed calculations with trial functions of the form 

~b = (1 - x2) 2 ( 1 -  y2)2 {al + a2 (x 2 + y2)+ a3 X 2 y2 + a ,(x 4 + y4)}, (68) 

and 
x y 

= - �88 2 + y2)+b t cosh ~ cosh ~ + b2 (cosh x +cosh  y)+ 

5 
+ ~ br (cosh px cos py + cos px cosh py), (69) 

r=3 

with p--(r-~)Tz. The function q~ in (68) satisfies the exact boundary conditions (63)and (64), 
and the function ~g in (69) satisfies the constraint (45), that is LtP= 1 in R. The parameters 
a, and b, were determined by optimizing the functionals J and G, and the results including the 
error bound are given in Table 1. In this example, the lowest eigenvalue of the problem in (56) 

TABLE 1 

Variational parameters and error bound 

al a 2 a 3 a 4 J E 

1.8789 (--2) 5.3218 ( - 3 )  6.7401 (--3) 3.9789 (--4) - 1.165338 ( - 2 )  2.3 ( - 4 )  

bl b2 b 3 b 4 b 5 G 

-8.0044 4.4378 - 1 . 8 8 1 7 ( - 1 )  5 .6447(-5)  - 2 . 0 2 5 1 ( - 7 )  - 1 . 1 6 5 5 5 7 ( - 2 )  

Here m ( - n )  means m • 10-". 
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to (59) has a lower bound given by A = 80.86 ([5]) .  It can be seen from Table 1 that the variational 
solution (68) is quite accurate, its maximum error being 2.3 x 10 -4. 
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